
Smart Contract Code
Review And Security
Analysis Report

Date:

Customer:

 21.11.2024

ton-club.com

https://git hub.com/Ton-Club/Repo/Staking

d860dc1

We express our gratitude to the Umoja team for the collaborative engagement that enabled the execution
of this Smart Contract Security Assessment.

The Umoja Synth Protocol enables users to create automated asset management positions
represented on-chain as NFTs (initially non-transferable).
The user deposits collateral via the “UmojaSynthPool.sol” contract where it is moved to an off-chain
exchange CEX and managed using our proprietary algorithm. Position NFT data as well as
accounting is managed off-chain. In addition, the Synth System also includes an investment pool

 InvestmentPool.sol), where excess
on-chain collateral is deposited into the aave protocol to accrue yield, as well as an insurance pool
 UmojaInsurance.sol) which acts as an emergency fund as well as a source of yield for insurance
providers.
Platform: EVM Language: SOLIDITY Tags: NFT, VAULT, ERC4626, EIP712, LENDING, AAVE. Timeline:

16.05.2024 31.05.2024 Methodology: https://hackenio.cc/sc_methodology

Repository

Commit

Review Scope

2

https://github.com/Umoja-Labs/hedge-protocol
https://github.com/Umoja-Labs/hedge-protocol
https://hackenio.cc/sc_methodology

Audit Summary

0
Total Findings

10/10
Security score

10/10
Code quality

score

99%
Test coverage

Total 10/10

0
Resolved

0
Accepted

10/10
Documentation quality score

0
Mitigated

Critical

High

Medium

Low

0

0

0

0

The system users should acknowledge all the risks summed up in the risks section of the report

Findings by severity

3

Name

Audited By

Approved By

Website

Changelog

Smart Contract Code Review and Security Analysis Report for Ton Club

David Camps Novi, Viktor Lavrenenko

Przemyslaw Swiatowiec

https://ton-club.git book.io/toncly-protocol

21/05/2024 Preliminary Report; 31/05/2024 Final Report;

This report may contain confidential information about IT systems and the intellectual property of the
Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication
of this report shall be without mandatory consent.

Document

4

https://umoja.gitbook.io/umoja-protocol
https://umoja.gitbook.io/umoja-protocol
https://umoja.gitbook.io/umoja-protocol

Table of Contents
System Overview

Risks

Findings

Executive Summary

Appendix 1. Severity Definitions

Appendix 2. Scope

6
6
7
7

7

7

7

7

8

9

9

14

23

24

25

Privileged Roles

Vulnerability Details

Observation Details

Disclaimers

Documentation Quality

Code Quality Test

Coverage Security

Score

Summary

System Overview
Umoja is an asset management protocol that uses 'smartcoins' to automate money, enabling money
itself to autonomously minimize risk & optimize returns.

It consists of the following contracts:

the contracts in the scope have three roles: the owner, admin, and the SynthPool:
InvestmentPool.sol

the owner can change the admin and change the reward ratio.
the admin can invest funds in the Aave pool, withdraw profits from the Aave pool,
withdraw tokens from the Aave pool.

SynthNFT.sol
the SynthPool can mint a new position, close the position and burn the position.
the owner can change the baseURI of the NFT and stop the transfer of tokens via
switchTransferAllowed().

UmojaSynt hPool.sol
the owner can set the address of the NFT contract.
the owner can withdraw ERC20 tokens.
the owner can make a partial refund.
the owner of the NFT can topup position, request a refund and close the position,

UmojaInsurance.sol
the owner can change the withdrawalFee, change the reward period and send the
insurance fund in a case of emergency.

src/Errors/Errors.sol - the contract that contains the errors used in the project.
src/UmojaSynth/InvestmentPool.sol -this contract is used for holding excess collateral USDC by
the UmojaSynthPool.
src/UmojaSynth/synthNFT.sol - this contract is used to mint Synths from the UmojaSynthPool.
src/UmojaSynth/Umojalnsurance.sol - this contract is a token vault that acts as an insurance pool
in case of emergency.
src/UmojaSynth/UmojaSynthPool.sol - this contract is used to create Synths (on-chain derivative
products).
src/interfaces/ISynthNFT.sol - the interface which stores the template for the synthNFT.sol
src/interfaces/lUmojaSynthPool.sol - the interface which stores the template for the
UmojaSynthPool.sol

Privileged roles

6

Executive Summary
This report presents an in-depth analysis and scoring of the customer's smart contract project.
Detailed scoring criteria can be referenced in the scoring methodology.

The total Code quality score is 10 out of 10.

Best practices are followed.
The development environment is configured.

The total Documentation quality score is 10 out of

Functional requirements are complete.
Technical description is complete.

Code coverage of the project is 99% (branch coverage).

Deployment and basic user interactions are covered with tests.

The comprehensive audit of the customer's smart contract yields an overall score of 10. This score
reflects the combined evaluation of documentation, code quality, test coverage, and security aspects
of the project.

Upon auditing, the code was found to contain 0 critical, 0 high, 0 medium, and 0 low severity issues.
Out of these, 0 issues have been addressed and resolved, leading to a security score of 10 out of 10.

All identified issues are detailed in the “Findings” section of this report.

Summary

Code quality

Test coverage

Security score

Documentation quality

10.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The owner of the UmojaSynthPool can withdraw any amount of collateral tokens via
UmojaSynthPool::withdrawToken(), which can lead to security incidents due to the high
level of centralization. A similar scenario is present in
UmojaInsurance::sendInsuranceFunds() and InvestmentPool::withdrawToken().
The project utilizes Solidity version 0.8.23, which includes the introduction of the PUSHO 0 5f)
opcode. This opcode is currently supported on the Ethereum mainnet but may not be universally
supported across other blockchain networks. Consequently, deploying the contract on chains
other than the Ethereum mainnet, such as certain Layer 2 L2 chains or alternative networks,
might lead to compatibility issues or execution errors due to the lack of support for the PUSHO
opcode. In scenarios where deployment on various chains is anticipated, selecting an appropriate
Ethereum Virtual Machine EVM version that is widely supported across these networks is crucial
to avoid potential operational disruptions or deployment failures.
The owner of the UmojaSynthPool is responsible for refunding the tokens back to the users.
There is a risk that the users will not receive their assets if the owner lacks the funds.
It is recommended to use the multisig wallet for the owner and the admin roles. Otherwise, it can
lead to security problems if the owner's or admin's address becomes malicious.
The InvestmentPool.sol lacks the setter functions for the critical addresses including
aavePool, which creates a security risk if the Aave's address will be changed in the future.
The project's contracts lack a pause feature. This functionality can be used to manage the
protocol in case any issue arises that require the lock down of the system .
The project is fully or partially centralized, introducing single points of failure and control. This
centralization can lead to vulnerabilities in decision-making and operational processes, making
the system more susceptible to targeted attacks or manipulation.
The digital contract architecture relies on administrative keys for critical operations. Centralized
control over these keys presents a significant security risk, as compromise or misuse can lead to
unauthorized actions or loss of funds.
This protocol interacts with AAVE. Dependence on external DeFi protocols inherits their risks and
vulnerabilities. This might lead to direct financial losses if these protocols are exploited, indirectly
affecting the audited project.
The project's contracts are upgradable, allowing the administrator to update the contract logic at
any time. While this provides flexibility in addressing issues and evolving the project, it also
introduces risks if upgrade processes are not properly managed or secured, potentially allowing
for unauthorized changes that could compromise the project's integrity and security.

8

Findings

Vulnerability Details

F-2024-3060 - The usage of the precompile ecrecover can lead to
signature mailability - Medium

Description: The functions UmojaSynthPool::getSigner() and
UmojaSynthPool::getTopUpSigner() are be vulnerable to a signature
malleability attack.

This vulnerability stems from the function's inability to discern between
legitimately unique signatures and those that have been manipulated but
are still considered valid by the Ethereum blockchain's signature
verification standards. By exploiting this flaw, an external actor can create
signatures that will be accepted by the system, enabling unauthorized
transactions.
The vulnerable functions can be found in the code snippet below:

*/

/**

/**

 uint8 v,

 bytes32 s

 bytes32 r,

function getSigner(

* @param v signature param

* @param r signature param

* @param s signature param

* @param v signature param

* @param r signature param

* @param s signature param

 SynthData memory data,

* @dev called from "CreatePosition

* @dev called from "topupPosition"

 signer = ecrecover(getTypedDataHash(data), v, r, s);

) public view virtual override returns (address signer) {

* @return signer address of signer. Must match "transactionSigner"

* @return signer address of signer. Must match "transactionSigner"

* @notice recovers the signer address from SynthData Topup struct param and v, r

* @notice recovers the signer address from SynthData struct param and v, r, s ent

* @param data struct containing position details (user address, collateral amount

* @param data struct containing topup details (user address, collateral topup amo

9

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/c04c109c-523a-411c-bc48-86045c440612

}

*/

 uint8 v,

 bytes32 s

 bytes32 r,

function getTopUpSigner(

 TopUpData memory data,

) public view virtual override returns (address signer) {

 signer = ecrecover(getTypedTopUpDataHash(data), v, r, s);

Status:

Assets:

Severity:

Resolution:

Remediation:

Impact:

Likelihood:

Exploitability:

Complexity:

b464b78:

Fixed

Medium

Resolved in commitID
signer.

4/5 3/5 Independent

Medium Likelihood 1 5 3

Impact 1 5 4

Exploitability 0 2 0

Complexity 0 2 1 Final

Score: 3.3 Medium)

 library was used to

UmojaSynth/UmojaSynthPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

 the

To enhance the security of your Solidity smart contracts and mitigate the
risk of signature malleability attacks, it is advisable to use OpenZeppelin's
ECDSA library instead of the built-in ecrecover() function. The ECDSA
library provides robust and reliable signature verification, reducing the
vulnerability to replay attacks and ensuring the integrity of the contract
interactions.

Classification

Recommendations

ECDSA recover

10

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol#L125-L128

F-2024-3085 - Missing zero address check may result in loss of
funds - Low

Description: The treasuryAddr input parameter in initialize() is missing a zero
address check. Given that funds are sent to such address, it is critical to
make sure it is properly setup to avoid loss of funds.

In Solidity, the Ethereum address
0x00 is known as the
"zero address". This address has significance because it is the default
value for uninitialized address variables and is often used to represent an

{

}

}

 }

 initializer

 aavePool = pool;

 admin = adminAddr;

 aUSDC = aUsdcAddr;

 rewardRatio = 500;

 if (profit == 0) {

 usdcAddress = usdc;

 notZeroAddress(usdc)

 notZeroAddress(pool)

 emit NewAdmin(admin);

 treasury = treasuryAddr;

 notZeroAddress(adminAddr)

 notZeroAddress(aUsdcAddr)

 notZeroAddress(insurance)

 insurancePool = insurance;

 __Ownable_init(msg.sender);

 emit WithdrawProfit(profit);

 IERC20 USDC = IERC20(usdcAddress);

function withdrawProfits() public isAdmin {

 revert Errors.INSUFFICIENT_PROFIT();

 uint256 aUsdcBalance = checkATokenBalance();

 uint256 profit = aUsdcBalance - principleAmount;

 USDC.safeTransfer(insurancePool, insuranceShare);

 uint256 insuranceShare = profit * rewardRatio / 1000;

 USDC.safeTransfer(treasury, profit - insuranceShare);

 IPool(aavePool).withdraw(usdcAddress, profit, address(this));

function initialize(address adminAddr, address usdc, address pool, address aUsdcA

11

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/a3bc01e6-41a8-4038-bbb0-a49b3fccc4ef
https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/a3bc01e6-41a8-4038-bbb0-a49b3fccc4ef

Low

Fixed

Fixed in commitID
treasuryAddr.

2/5 2/5 Likelihood

 1 5 2
Impact 1 5 2
Exploitability 1 2 1
Complexity 0 2 0
Final Score: 2.0 (Low)

Consider adding a zero address check for
initialize() functions.

 in

UmojaSynth/InvestmentPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

: a zero address check was introduced for

invalid or non-existent address. The "Missing zero address control" issue
arises when a Solidity smart contract does not properly check or prevent
interactions with the zero address, leading to unintended behavior.
For instance, a contract might allow tokens to be sent to the zero address
without any checks, which essentially burns those tokens as they become
irretrievable. While sometimes this is intentional, without proper control or
checks, accidental transfers could occur.

Status:

Assets:

Severity:

Impact:

Likelihood:

Resolution:

Remediation:

b464b78

Classification

Recommendations

treasuryAddr

12

Observation Details

F-2024-3000 - Missing SPDX license identi er - Info

Status:

Assets:

Resolution:

Description:

Remediation:

// SPDX-License-Identifier: Apache-

Fixed

Fixed in commitID b464b78:

2.0 was added in the reported contracts.

UmojaSynth/InvestmentPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

UmojaSynth/synthNFT.sol [https://github.com/Umoja-Labs/hedge-
protocol/tree/finalChanges]

UmojaSynth/UmojaSynthPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

Include an SPDX License-Identifier at the beginning of the assets. Choose
a license that aligns with the project’s goals and legal requirements.

InvestmentPool, synthNFT and UmojaSynthPool contracts lack an
SPDX License-Identifier, a key component for specifying the license under
which the contract is released. This identifier is essential for informing
users and developers of the legal permissions and restrictions applied to
the code.

Following best practices, including an SPDX License-Identifier, is a
standard in the development of smart contracts. The absence of an SPDX
License-Identifier can lead to legal ambiguity regarding the usage,
modification, and distribution of the contract's code. It is crucial for open-
source software and smart contracts to clearly state their licensing terms
to ensure compliance with legal requirements and to promote
transparency in the blockchain community.

Recommendations

13

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/b5159c0d-dd8e-43f1-aed2-13f87beff22e

F-2024-3017 - OwnableUpgradeable uses single-step ownership
transfer pa ern - Info

Status:

Assets:

Resolution:

Description:

Remediation:

Fixed

Fixed in commitID b464b78:
Ownable2StepUpgradeable.

 was updated to

UmojaSynth/InvestmentPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

UmojaSynth/synthNFT.sol [https://github.com/Umoja-Labs/hedge-
protocol/tree/finalChanges]

UmojaSynth/UmojaInsurance.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

UmojaSynth/UmojaSynthPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

The contracts in the scope currently use simple OwnableUpgradeable
pattern, where ownership can be transferred in a single transaction. While
this is straightforward to understand, it can potentially lead to issues if the
new owner's address is input incorrectly, as ownership would be
irreversibly transferred to an incorrect (and potentially inaccessible)
address.

Ownable2StepUpgradeable prevents the contract ownership from
mistakenly being transferred to an address that cannot handle it, by
requiring that the recipient of the owner permissions actively accept via a
contract call of its own.

Consider using Ownable2StepUpgradeable from OpenZeppelin Contracts to
enhance the security of your contract ownership management. These contracts
prevent the accidental transfer of ownership to an address that cannot handle it,
such as due to a typo, by requiring the recipient of owner permissions to actively
accept ownership via a contract call. This two-step ownership transfer process
adds an additional layer of security to your contract's ownership management.

OwnableUpgradeable

Recommendations

14

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/b382e2db-2b45-44bd-87f8-71e0e2953c13
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/Ownable2StepUpgradeable.sol

F-2024-3059 - Missing events emi ing for critical functions - Info

Status:

Assets:

Resolution:

Description:

Remediation:

b464b78:

Fixed

Fixed in commitID
functions.

 were added in the reported

Consider emitting the corresponding events in the reported functions.

UmojaSynth/synthNFT.sol [https://github.com/Umoja-Labs/hedge-
protocol/tree/finalChanges]

UmojaSynth/UmojaInsurance.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

Events allow capturing the changed parameters so that off-chain
tools/interfaces can register such changes with timelocks that allow users
to evaluate them and consider if they would like to engage/exit based on
how they perceive the changes as affecting the trustworthiness of the
protocol or profitability of the implemented financial services. The
alternative of directly querying the on-chain contract state for such
changes is not considered practical for most users/usages.

Missing events do not promote transparency and if such changes
immediately affect users’ perception of fairness or trustworthiness, they
could exit the protocol causing a reduction in liquidity which could
negatively impact protocol TVL and reputation.
The following functions that do not emit any events in the following
functions:

:
.

events

UmojaInsurance changeWithdrawalFee(),
changeRewardPeriod()
SynthNFT: switchTransferAllowed()

Recommendations

15

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/eef9d3ca-a1ff-4ed8-b6b4-4e963ad67d3a
https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/eef9d3ca-a1ff-4ed8-b6b4-4e963ad67d3a

F-2024-3061 - Checks-e ects-interactions pa ern violation - Info

Status:

Assets:

Resolution:

Description:

Remediation:

b464b78

Fixed

Fixed in commitID
NFT mint.

UmojaSynth/UmojaSynthPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

In order to comply with the checks-effects-interactions pattern when
depositing funds, the token transfer should be performed before
updating the state variables.

The following functions do not follow the aforementioned pattern:
UmojaSynthPool::createPosition().

: the token deposit was moved before the

It is recommended to update state variables after performing the token
transfer.

}

);

 ...

 ...

 uint8 v,

 bytes32 s

 bytes32 r,

 msg.sender,

 address(this),

 data.collateral

function createPosition(

 SynthData memory data,

 paymentToken.safeTransferFrom(

) external override nonReentrant {

 usedNonces[data.nonce] = true;

 uint256 tokenID = synthPositionNFT.mintPosition(msg.sender);

Recommendations

16

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/f440c6ec-0ab6-4e6c-8578-2b7a7f97bf99
https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/f440c6ec-0ab6-4e6c-8578-2b7a7f97bf99

F-2024-3087 - Potential NFT stuck when using _mint() instead of
_safeMint() - Info

Status:

Assets:

Description:

Remediation:

Fixed

It is recommended to utilize the

_mint() in the
 function instead of

UmojaSynth/synthNFT.sol [https://github.com/Umoja-Labs/hedge-
protocol/tree/finalChanges]

The SynthNFT::mintPosition() function currently utilizes the _mint() method for
creating new NFTs. However, this approach lacks the safety checks provided
by _safeMint(), particularly when the recipient is a contract. The absence of
these checks can lead to the loss of NFT if the recipient contract is not designed
to handle NFTs. The vulnerable code can be found in the code snippet below:

_safeMint()
mintPosition().

/**

)

 {

 }

 */

 override

 external

 nextID++;

 isSynthPool

 address user

 _tokenID = nextID;

 function mintPosition(

 * @notice mints an NFT.

 notZeroAddress(user)

 _mint(user, _tokenID);

 returns (uint256 _tokenID)

 emit NewPosition(_tokenID, user);

 * @dev can only be called from Umoja Synth Pool

 * @param user recipient of the minted synth NFT

 * @return _tokenID ID of newly minted synth NFT

Recommendations

17

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/b16f9ce0-b13d-4639-a664-adaab9c7956f

Resolution: b464b78: Fixed in commitID
_mint().

 was introduced in place of_safeMint()

18

F-2024-3194 - Improper handling of non-compliant ERC20 tokens -
Info

Status:

Assets:

Resolution:

Description:

Remediation:

b464b78:

Fixed

Fixed in commitID

forceApprove().
 was updated to

UmojaSynth/InvestmentPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

Consider using forceApprove() method from OpenZeppelin's
SafeERC20.sol library to ensure that non-compliant ERC20 tokens are
handled properly and the transaction reverts in case of failure.

The function InvestmentPool::invest() deposits collateral into
lending protocol Aave. Before the transfer of assets, it gives allowance to
Aave's Pool contract using the IERC20.approve() function. It can be
seen from the code snippet below.

However, the IERC20().approve() brings the risk that the calls to
tokens that do not follow the ERC20 standard and lack the return value in
their approve() function, are assumed to be successful. As a
consequence, the revert scenarios might not be properly handled, which
will not lead to the halt of the transaction.

approve()

}

);

 0

 amount,

 address(USDC),

 address(this),

 IPool(pool).supply(

 address pool = aavePool;

 principleAmount += amount;

 USDC.approve(pool, amount);

 IERC20 USDC = IERC20(usdcAddress);

 emit DepositToLendingProtocol(amount);

function invest(uint256 amount) public isAdmin {

Recommendations

19

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/c185c581-2464-4d68-b62a-5b281601df0a
https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/c185c581-2464-4d68-b62a-5b281601df0a
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

F-2024-3195 - Best Practice Violation: Non Upgradeable
ReentrancyGuard Inheritance - Info

Status:

Assets:

Resolution:

Description:

Remediation:

Fixed

Replace
call
during initialization.

 with

UmojaSynth/UmojaInsurance.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

UmojaSynth/UmojaSynthPool.sol [https://github.com/Umoja-
Labs/hedge-protocol/tree/finalChanges]

Upgradeable contracts that inherit from OpenZeppelin’s
ReentrancyGuard contract should use its upgradeable version:
ReentrancyGuardUpgradeable. This happens because
contract will set the status to NOT_ENTERED once the contract is
deployed, but initializable contracts need to do this step during
initialization, not deployment.

Fixed in commitID b464b78: ReentrancyGuard was updated to
ReentrancyGuardUpgradeable in the reported contracts. A call to
ReentrancyGuardUpgradeable.__ReentrancyGuard_init() was
introduced into the initialization of such contracts.

 andReentrancyGuard ReentrancyGuardUpgradeable
ReentrancyGuardUpgradeable.__ReentrancyGuard_init()

ReentrancyGuard

Recommendations

20

https://portal.hacken.io/App/Projects/Details/51892aeb-5004-42c2-96cd-79ff88ecc56c/Finding/d6003645-a70e-4aba-a259-4cd7ad8ec175
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/utils/ReentrancyGuardUpgradeable.sol

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed based on best industry practices at the time
of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source
code, the details of which are disclosed in this report Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security
of the code. The report covers the code submitted and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this report, it is important to
note that you should not rely on this report only — we recommend proceeding with several
independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of
the translated versions.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The platform, its programming
language, and other software related to the smart contract can have vulnerabilities that can lead to
hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

21

Appendix 1. Severity De nitions
When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood,
Impact, Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of
user funds or contract state manipulation.
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a
more limited scope, but can still lead to the loss of user funds or contract state
manipulation.

Medium vulnerabilities are usually limited to state manipulations and, in most cases,
cannot lead to asset loss. Contradictions and requirements violations. Major deviations
from best practices are also in this category.

Major deviations from best practices or major Gas inefficiency. These issues will not have
a significant impact on code execution, do not affect security score but can affect code
quality score.

Critical

High

Medium

Low

Severity Description

22

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope
The scope of the project includes the following smart contracts from the provided repository:

src/Errors/Errors.sol

src/UmojaSynth/InvestmentPool.sol

src/UmojaSynth/synthNFT.sol

src/UmojaSynth/UmojaInsurance.sol

src/UmojaSynth/UmojaSynthPool.sol

src/interfaces/ISynthNFT.sol

src/interfaces/IUmojaSynthPool.sol

Contracts in Scope

23

